技術(shù)文章
Technical articles水凝膠是一類能保持大量水分且具生物相容性的三維結(jié)構(gòu)凝膠,部分水凝膠還可對pH值、溫度、電場和光有獨。特響應(yīng)并產(chǎn)生物理化學(xué)結(jié)構(gòu)的變化,從而在智能傳感器、生物工程和軟體機器人等領(lǐng)域廣泛應(yīng)用。近年來,水凝膠也開始應(yīng)用于太陽能驅(qū)動的水蒸發(fā)、脫鹽、水凈化和消毒以及太陽能驅(qū)動的水-電-氫發(fā)電等領(lǐng)域。有報道指出,通過調(diào)節(jié)聚合物網(wǎng)絡(luò)與水分子之間的相互作用,水凝膠太陽能蒸發(fā)器(SVG)可在一個陽光下(光強度約1000Wm-2)達到相當高的水蒸發(fā)速率。由于蒸發(fā)發(fā)生在水凝膠界面,合理設(shè)計蒸發(fā)材料表面微結(jié)構(gòu)對于太陽能水蒸發(fā)尤為重要。為了制造出復(fù)雜三維結(jié)構(gòu)的水凝膠功能器件,基于立體光刻的微型 3D 打印方法越來越受歡迎。
近期,哈利法大學(xué)的張鐵軍教授團隊提出了一種新型的三維功能化水凝膠器件制備方法。該團隊利用新型微立體光刻技術(shù)(nanoArch S130,摩方精密)實現(xiàn)了水凝膠的高精度3D打印,并將金屬鹽離子引入到水凝膠單體混合物p(NIPAm-co-PEGDA)中,最終獲得具有高吸光性能的含氧化鐵納米顆粒 (Fe3O4NPs)水凝膠太陽能蒸發(fā)器。該制備方法成功解決了3D打印復(fù)合材料中的多重問題,例如不均勻的顆粒分布、團聚、固化光的散射及其帶來的打印質(zhì)量和分辨率惡化。利用該方法制成的復(fù)合水凝膠結(jié)構(gòu)表現(xiàn)出了優(yōu)異的光吸收性能和快速毛細力水傳輸性能,在非聚光情況下實現(xiàn)了5.12kgm-2h-1的超高水蒸發(fā)率。相關(guān)成果以“Direct solar vapor generation with micro-3D printed hydrogel device"為題發(fā)表在《EcoMat》期刊上。
圖1. (a)基于3D打印的含金屬納米顆粒水凝膠NPH復(fù)合材料的 SVG 裝置示意圖。(b)在水凝膠PEGDA泡沫和互連的微通道網(wǎng)絡(luò)內(nèi)毛細力驅(qū)動的水輸運。(c) 用Fe3O4納米顆粒加強SVG蒸發(fā)表面的光吸收能力。
該研究中,含金屬納米顆粒的水凝膠(NPH)太陽能水蒸發(fā)器裝置如圖 1(a) 所示,它包含兩個主要組件:(i)3D打印的NPH各向異性結(jié)構(gòu),蒸發(fā)表面具有 Fe3O4納米顆粒,用以增強太陽能吸收,而底部層則嵌入了使用NPH打印的互連微通道; (ii)作為毛細材料的超親水PEGDA泡沫和微通道網(wǎng)絡(luò)(微通道寬為250µm)。團隊成員使用面投影微立體光刻技術(shù)(nanoArch S130, 摩方精密)完成器件的制備。為了通過微型 3D 打印技術(shù)制造NPH太陽能水蒸發(fā)器,該團隊制備了兩種打印材料配方?;A(chǔ)配方是一種光固化/溫度響應(yīng)型NPH水凝膠。一旦固化后,單體會交聯(lián)產(chǎn)生一個微型多孔表面(孔徑為 5±0.8µm),如圖 2 中的掃描電子顯微鏡(SEM) 圖像所示。為了將Fe3O4納米顆?;烊胨z交聯(lián)網(wǎng)絡(luò)中,團隊首先將金屬鹽Fe(NO3)3和FeCl2混入水凝膠打印材料的基礎(chǔ)配方中,打印完成后,將器件置入堿性條件下,F(xiàn)e3+ 和 Fe2+會共沉淀形成Fe3O4納米顆粒。由此,最終制備的NPH器件表面呈漆黑色,反映了薄膜較強的光吸收能力。
在日常陽光照射下,該NPH器件的水蒸發(fā)速率約為5.12kgm-2h-1。這種超高的蒸汽生成率與Fe3O4納米顆粒誘導(dǎo)的水凝膠網(wǎng)絡(luò)內(nèi)的潤濕性轉(zhuǎn)換和水活化能力有關(guān)。為了進一步研究該裝置的整體穩(wěn)定性,該團隊還在不同強度的太陽輻射和鹽水(3.5 wt% NaCl溶液)下進行了一系列實驗。與最初的實驗結(jié)果一致,3D打印的NPH水凝膠裝置在500、1000和1500Wm-2的模擬太陽強度照射下表現(xiàn)出了顯著的蒸發(fā)速率,分別為3.96、5.12和6.48kgm-2h-1,分別如圖3所示。與先前報道的基于水凝膠的材料相比,該工作提出的NPH蒸發(fā)器表現(xiàn)出超高效的太陽能水蒸發(fā)能力,在太陽能污水處理和海水淡化方面具有巨大應(yīng)用潛力。
圖2 3D打印的NPH水凝膠的微觀形貌表征。(a-b)NPH水凝膠和Fe3O4納米顆粒的低倍和高倍SEM圖像。 (c)純NPH水凝膠和具有Fe3O4納米顆粒的NPH水凝膠的FTIR光譜。(d)NPH水凝膠內(nèi)Fe3O4納米顆粒的XRD譜。
圖3. (a)在120µm和1mm的薄膜厚度下,含Fe3O4顆粒的NPH水凝膠的UV-Vis-NIR吸收光譜。(b)當水凝膠周圍的水被加熱時,用光學(xué)顯微鏡捕獲的3D打印的NPH水凝膠的溫度響應(yīng)。(c)純NPH水凝膠和含Fe3O4顆粒的NPH水凝膠的接觸角及其溫度的影響。(d) 水在含Fe3O4顆粒的NPH水凝膠內(nèi)的DSC熱流信號
圖4. 3D打印的NPH水凝膠器件的太陽能水蒸發(fā)性能。(a-b)在非聚光情況下,3D打印的NPH水凝膠裝置的水蒸發(fā)速率。(c)3D打印的NPH水凝膠裝置在不同太陽強度照射下的水蒸發(fā)速率。插圖為相應(yīng)的紅外圖像,顯示了太陽能吸收表面的溫度分布。(d)3D打印的NPH水凝膠器件的性能穩(wěn)定性實驗。(e)3D打印的NPH水凝膠器件用于太陽能海水(3.5wt%NaCl水溶液)蒸發(fā)時的蒸發(fā)速率。(f)NPH水凝膠器件的蒸發(fā)速率與已有文獻報道的數(shù)值比較。